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Abstract— Establishing standardized metrics for Social Robot
Navigation (SRN) algorithms for assessing the quality and social
compliance of robot behavior around humans is essential for
SRN research. Currently, commonly used evaluation metrics
lack the ability to quantify how cooperative an agent behaves
in interaction with humans. Concretely, in a simple frontal
approach scenario, no metric specifically captures if both agents
cooperate or if one agent stays on collision course and the
other agent is forced to evade. To address this limitation, we
propose two new metrics, a conflict intensity metric and the
responsibility metric. Together, these metrics are capable of
evaluating the quality of human-robot interactions by showing
how much a given algorithm has contributed to reducing a
conflict and which agent actually took responsibility of the
resolution. This work aims to contribute to the development
of a comprehensive and standardized evaluation methodology
for SRN, ultimately enhancing the safety, efficiency, and social
acceptance of robots in human-centric environments.

I. PROBLEM STATEMENT
Research on Social Robot Navigation (SRN) is advancing
rapidly, leading to the development of new algorithms that
enable intelligent, foresighted navigation around humans,
even in dense crowds [1]–[3]. However, in order to improve
and compare SRN algorithms, clear and agreed upon evalua-
tion protocols and metrics are required. To address this need,
recent efforts have been made to establish common ground
in the scientific community. Francis et al. [1] provide a
broad survey on the current state of Social Robot Navigation,
including evaluation. They surveyed the most prevalent simu-
lators and datasets used for evaluation, along with commonly
used metrics and a taxonomy for these metrics. Wang et al.
[4] propose a condensed set of metrics which evaluate the
comfort, naturalness, and sociability along with an evaluation
protocol. Gao et al. [2] compile a large number of metrics for
navigation performance, human discomfort and sociability.

All these studies report a lack of agreed-upon benchmarks
and evaluation criteria. This holds especially true for the
evaluation of one of the core aspects of Social Robot Nav-
igation, the interaction between agents. In this sense, SRN
can be seen as a sequence of resolving interactions between
various agents until the robot reaches its goal. In each
interaction, both parties have to resolve a potential conflict
[5]. Improving the interactions between robots and humans
contributes to various aspects of SRN, such as Safety, Social
Compliance, or human discomfort. The ability to measure
how cooperative an agent behaves around humans is crucial
to the development of SRN algorithms, allowing for direct
comparison and quantifiable improvement.
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This is aggravated by the fact that humans are very
adaptive. Humans will adapt quickly to an unresponsive or
uncooperative robot by efficiently taking responsibility for
the conflict resolution. Even unsophisticated navigation will,
most likely, not lead to a significant number of collisions
or similar commonly used success metrics for SRN. As
a result, most metrics will not capture the difference in
social compliance between good or bad robotic behavior.
Specifically, when a human and a robot are evading each
other, they do not capture the amount to which an agent
contributes to the resolution of the conflict. However, socially
inept navigation will create inefficiency and annoyance to the
humans around the robot, especially if the penetration rate
goes up.

We determine that most metrics do not capture complex
aspects of behavior quality such as cooperativeness or social
compliance. Furthermore, even if those metrics indicate
that an observed interaction was resolved proficiently, most
metrics are symmetrical by design, i.e., they do not indicate
which agent was responsible for the resolution.

To spark discussion on this topic, we show in Section
III using a simple experimental setup with highly adaptive
agents, that the most commonly used metrics do not capture
the social quality of an algorithm’s behavior. In Section IV,
we propose two novel metrics: Conflict Intensity and Respon-
sibility. We assess their insights into the experiments and
discuss potential for further research on advanced metrics to
evaluate social compliance.

II. EXISTING SOCIAL COMPLIANCE METRICS

In order to evaluate commonly used metrics to assess the
performance of SRN algorithms, we use a battery of well-
established task-wise metrics. Using the taxonomy estab-
lished by [1], we focus on Social, Hand-Crafted (Algorith-
mic) and Task-Wise metrics to evaluate quality of behavior
and social compliance. Within this category, we distinguish
between kinematic, distance-based, and prediction-based.

Kinematic metrics assess the task performance using the
robot’s motion data. Commonly used are measures which
represent the minimum, average or maximum of the robot’s
velocity vmin, vavg, vmax, acceleration amin, aavg, amax and jerk
jmin, javg, jmax [1]. These measures serve as surrogates for
social compliance, based on the assumption that higher social
compliance enables the robot to maintain higher speeds or
smoother motion profiles.

Metrics based on the robot’s distance to pedestrians in each
time step capture that close proximity to the robot is inher-
ently dangerous. Francis et al. [1] collected several quality



and social metrics that fall into this category. Measures based
on average or maximum Clearing Distance, CDavg, CDmax
directly represent the minimum distance between the robot
and an object it encounters. Note that the average/maximum
refers to the statistics over multiple encounters with several
objects. Other measures, like Space Compliance/Violation
Rate SVR, evaluate the duration (or rate) for which two
agents enter each other’s designated space. In this context,
we consider the space in question to be the Personal Space,
according to the Proxemics model [6]. Truong and Ngo [7]
proposed the Collision Index CI (also referred to as Social
Individual Index SSI), which is a distance-based metric
parameterized by a standard deviation of the pedestrian’s
personal space.

Some metrics utilize the measured velocities of the robot
and other agents, applying constant-velocity predictions to
capture the criticality of observed behavior. The Minimum
Time-To-Collision TTCmin [1], [8] captures the criticality of
a collision if both agents continue to move with their current
velocity vector. The Projected Path Duration PPD [4], [9]
evaluates the duration, for which the social safety zones of
two agents overlap. Each safety zone is represented by a
rectangular area in front of the agent defined by the width
of the agent and a velocity-proportional length of the safety
zone.

All these metrics aim to capture various aspects of safety,
perceived or factual, of behavior computed by SRN al-
gorithms. However, they do not directly capture the key
dimensions of social compliance and cooperativity of robot
motion planning as the following simulative experiments
show. To the best of our knowledge, no existing metrics
capture the responsibility assumed by an agent during an
interaction.

III. EXPERIMENTS

In a simple experiment setup, we place two agents 20
meters apart, with their goals set to the other agent’s starting
position. The objective is to pass each other to reach their
goals. Both agents can be either ”compliant”, i.e., engaging
in the interaction by avoiding a collision and accepting a
longer path option to reach the goal or ”not compliant”, by
ignoring the other agent and ”blindly” showing a constant-
velocity behavior. We consider all four permutations of these
behavior modes. In the first scenario, both agents follow
a direct collision course, passing through each other and
reaching their goal on the direct path. While unrealistic, this
simulative scenario exemplifies a worst case of bad behavior
planning of both agents with the corresponding outcome.
In the second scenario, the ego agent (the robot) is non-
compliant and proceeds to ”barrel through” the other agent to
reach its goal. This can be considered bad behavior planning
on the side of the robot, as it shows no social compliance
whatsoever. In the third scenario, the roles are reversed and
the robot is compliant. In Scenarios 2 and 3, no collision
occurs due to the high adaptivity and social compliance of
one of the agents. In Scenario 4, both agents are compliant,
resulting in an efficient resolution of the scenario.

In this experiment, the compliant agents demonstrate fore-
sighted behavior by avoiding each other at an early stage.
To achieve this, we parameterize the Social Forces algo-
rithm [10] with highly cooperative parameters, specifically:
A = 5.1, λ = 3.0, γ = 0.35, n = 1 and n′ = 3.0). The
results of these simulations, evaluated with the commonly
used social evaluation metrics described in Section I, are
shown in Table III.

A. Finding 1: Evaluating Social Compliance

The experiment reveals that none of the metrics reliably
distinguish between Scenario 2 (where the robot behaves
uncooperatively) and Scenario 4 (where both agents behave
cooperatively). The kinematic metrics (1-5) fail to capture
the criticality of the robot’s behavior because the other
agent completely assumes the responsibility of resolving
the conflict. Distance-based measures (6-8), such Space
Violation Rate SVR and Collision Index CI, exhibit a slight
decrease when both agents are cooperative. Consistently, the
Clearing Distance CDavg shows a small increase. However,
based on their respective criticality thresholds, none of
these metrics would have flagged the robot’s behavior as
critical. Prediction-based metrics (9-10), such as TTCmin and
PPD, exhibit the most significant differences, although for
incorrect reasons. Although TTCmin indicates a difference
in criticality, both values are substantially higher than what
is normally considered critical. Moreover, the TTCmin is
only applicable when a collision is predicted, which is
too restrictive for movement in 2D space. The PPD does
not detect any criticality when both agents are compliant.
In conclusion, none of the commonly employed metrics
adequately capture the robot’s ability (or inability) to resolve
interactions.

B. Finding 2: Evaluating Interaction Responsibility

A comparison of the results from Scenario 2 (where the
robot behaves uncooperatively) and Scenario 3 (where the
human behaves uncooperatively) reveals that none of the
evaluated metrics provide a clear indication of which interac-
tion partner took responsibility. The differences in kinematic
metrics (1-5) are misleading, showing the uncompliant robot
(S2) as moving more smoothly, and will suffer in real-world
scenarios that are less sterile. All other metrics (6-10) are, in
fact, identical for Scenario 2 and 3. To address this limitation,
we introduce two novel metrics in the next section.

IV. PROPOSED METRICS

A. Conflict Potential

We begin by assessing the conflict potential in a scenario
involving two agents: the robot (referred to as ”ego”) and
another agent (referred to as ”other”). Later, we will extend
this theory to evaluate entire interactions and explore its
application to multiple agents.

Based on [11], which introduces the concept of Distance
at Closest Encounter (DCE), we calculate the predicted
Distance at Closest Encounter pDCE as a starting point.



TABLE I
COMMONLY USED METRICS FOR EVALUATING SRN PERFORMANCE

Scenario Resulting
paths

(1.)
Avg.
vel

(2.)
Avg.
accel

(3.)
Max.
accel

(4.)
Avg.
jerk

(5.)
Max.
jerk

(6.) Avg.
Clearing
Distance

(7.) Space
Violation

Rate

(8.)
Collision

Index

(9.)
Min.
TTC

(10.) Proj.
Path

Duration

Conflict
Intensity

Responsibility
(R/H)

S1: Nobody
compliant 1.0 0.0 0.0 0.0 0.0 0.0 0.12 1.0 0.0 3.0 10.26 (0, 0)

S2: Robot
not compliant 1.0 0.0 0.0 0.0 0.0 1.18 0.11 0.03 3.63 3.0 4.91 (0, 1)

S3: Human
not compliant 0.98 0.0 0.14 0.0 0.88 1.18 0.11 0.03 3.63 3.0 4.91 (1, 0)

S4: Both
compliant 0.99 0.0 0.05 0.0 0.89 1.54 0.10 0.0 4.79 0.0 3.89 (0.5, 0.5)

R

H
t = 0

t = 0

R

t = TTCE
H
pDCE

t = TTCE

Fig. 1. Construction of the predicted Distance at Closest Encounter
(pDCE). Based on their relative position and velocity, the time to closest
encounter (TTCE) can be computed. The distance at that time is the pDCE.

The pDCE assesses the minimum distance between the two
agents when their movements are predicted based on a
constant velocity assumption, as can be seen in Figure 1.
This metric indicates the proximity to a potential collision if
both agents continue along their current trajectories. Geomet-
rically, this equates to calculating the perpendicular distance,
calculated using the following equation:

pDCE =
|r× v|
|v|

(1)

Here, r is the relative position vector and v the relative
velocity vector of both agents. Based on the pDCE, the
Conflict Potential CP of a situation is given as:

CP= max(0, 1− pDCE
sego + sother

) (2)

Here, sego and sother represent the radii of both agents. The
conflict potential CP indicates the extent of overlap between
the two agents at the point of closest encounter. As a result,
the conflict potential C is at its max (i.e., equal to 1) in the
event of a head-on collision and minimal (i.e., equal to 0) in
the case of a near miss. Any motion that alters the agents’
trajectory away from a direct collision course will decrease
the conflict potential. Therefore, our first proposed metric,
the conflict Intensity I, is defined as:

I =

∫
CP(t) dt (3)

B. Responsibility

We define the Responsibility R in an interaction as the extent
to which an agent reduces the conflict potential. To determine
an agent’s responsibility in conflict resolution, we examine
how each agent’s behavior B contributes to reducing the
conflict potential CP. To approximate this, we calculate the
Conflict Contribution CC, caused by the change in behavior
dB of an agent in the last time-step, given by

CCagent =
d

dB
CP ≈ CP − CPno change, agent , (4)

where CPno change, agent is calculated based on the agent’s
velocity vector vt−1 from the previous time step. By integrat-
ing the Conflict Contribution CC over time for each agent,
we obtain a measure of the agent’s contribution to conflict
resolution, as expressed by:

R =
1

CP0

∫
CC(t) dt (5)

Here, CP0 is the conflict potential at the start of the
interaction which must be reduced to resolve the conflict.
Both the conflict Intensity I and the agent’s Responsibility
R are task-wise metrics, providing a single scalar value
that characterizes the entire observed interaction. In contrast,
the intermediate quantities CP (conflict potential) and CC
(conflict contribution) are step-wise metrics, whose evolution
over time provides insights into the progression of the
interaction between the two agents.

V. RESULTS FOR PROPOSED METRICS

For Scenario 1, a head-on collision scenario, the Conflict
Intensity for both agents is I = 10.255. If either of the agents
takes steps towards resolving the interaction, the conflict
intensity decreases to I = 4.910, and decreases to I = 3.889
if both agents cooperate. The relativity between these values
appears to be consistent, reflecting the fact that the conflict is
present in all cases, but the resolutions differ. We argue that
this is beneficial for measuring compliance in social robot
navigation, as it reflects the persistence of underlying con-
flicts despite mitigation by one of the agents. The reduction
of Intensity from Scenarios 2/3 to 4 is relatively small. This
is plausible, as one agent would have resolved the conflict



independently. However, when both agents share the burden,
the intensity is reduced further, albeit only slightly.

In contrast, other metrics seem to be less consistent across
scenarios. CDavg and TTCmin show a drastic reduction in
criticality between Scenario 1 vs. Scenario 2/3. Metrics like
PPD and CI decrease sharply when both agents resolve the
conflict, despite all scenarios beginning with the same initial
conflict. The SVR shows only a very small relative change
across all 4 Scenarios. This makes it harder to compare
different scenarios or algorithms.

The Responsibility metric shows a clear difference be-
tween the four scenarios: In the first scenario, neither agent
takes responsibility for avoiding the collision, resulting in
a collision. The Responsibility for both agents evaluates
to RR = RH = 0.0. In Scenarios 2 and 3, the agent that
takes responsibility earns the full share of the Responsibility
metric. Specifically, RH = 1.0 (in Scenario 3) and RR = 1.0 (in
Scenario 2), respectively. In the fourth scenario, where both
agents share the responsibility equally, the Responsibility
metric clearly indicates the cooperation: RR = RH = 0.5. The
equal 50% share of responsibility between the two agents is
a logical consequence of the symmetrical initial conditions
and the identical behavior planners used for both agents.

The proposed step-wise quantities Conflict Potential (CP)
and Conflict Contribution (CC) also provide insights into
the conflict resolution in these exemplary scenarios. Figure
2 provides the progression of CP and CC values in all 4
Scenarios. The top right plot shows that, while all scenarios
begin with the same Conflict Potential, the rate of conflict
resolution varies significantly. In Scenarios 2 and 3, the
conflict potential decreases at the same rate. However, in
Scenario 4, both agents cooperate to resolve the interaction,
resulting in a steeper decline in Conflict Potential and an
earlier resolution. Since the Intensity of the conflict is
equivalent to the area under the Conflict Potential curves,
this relationship is also reflected in the Intensity metric.
Similarly, the Conflict Contributions (lower left: ”ego, lower
right: ”other”) is smaller in Scenario 4, where both agents
cooperate. Consequently, the responsibility assigned to both
agents is smaller, as it is normalized by the initial overall
intensity of the interaction.

VI. DISCUSSION

To effectively use the proposed metrics as social quality
metrics for SRN, they must be applied not only to pairwise
interactions but also consider the presence of all other
pedestrians in the scene. To achieve this, average values of
Intensity and Responsibility can be used to assess how a
given algorithm’s behavior affects conflict intensity, either
by reducing or increasing it. Similarly, the average Respon-
sibility can serve as an indicator of the robot’s contribution
to conflict resolution.

Importantly, both metrics can be parameterized with the
agent radii to focus on social compliance regarding collision
or invasion of personal space. This enables a more nuanced
assessment of agent behavior, based on various environmen-
tal conditions, such as crowd density.

Fig. 2. Progression in all 4 Scenarios of various step-wise metrics used in
this work to derive the Intensity and Responsibility metrics.

A key insight from the construction of collision intensity
is that it is an integral over the collision potential. This
indicates that early conflict resolution significantly reduces
the intensity of a conflict compared to a late resolution. This
aligns with intuition, where a foresighted action reduces the
overall criticality compared to a late reaction, even though
the final outcome is the same. Moreover, the responsibility
metric would also attribute a significant share to an agent
executing an early action.

The proposed metrics are designed to be generalizable.
The use of pDCE as a base for constructing the metrics
makes the metrics meaningful for all motion in 2D space.
Additionally, the metrics can capture various types of be-
havior B. In an additional experiment, we observed that
two Social Force agents with the same parameters crossing
at a 90° angle showed different reactions to mitigate the
collision. One agent slowed down, resolving the interaction
via a change in speed. The other agent evaded by veering
away, resolving the interaction by changing direction. In this
case, the responsibility according to Eq. 5 showed an almost
equal share of responsibility.

VII. CONCLUSION

This paper addresses the need for advanced evaluation
metrics that capture social compliance and cooperativity
in Social Robot Navigation. Humans are highly adaptive
around robots, which is one of the main reasons why
commonly used metrics are insufficient. Through simulative
experiments, we demonstrate that typical metrics struggle
to distinguish between simplistic and socially compliant
navigation algorithms when interacting with cooperative
partners. We identify a need for additional metrics that
capture the reduction of conflict intensity and the allocation
of responsibility between agents. We propose two metrics,
the Conflict Intensity and the Responsibility for an agent’s
observed behavior. We show that these metrics effectively
capture the observed effects in our simulative experiments.
Our goal is to initiate a discussion on the development of
suitable metrics for evaluating the performance of Social
Robot Navigation algorithms in human-robot interactions.
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